
PPI Node Server

PDS Technical Session 
April 6, 2005



Basis

Do the most needed in the most direct way.
Efficiency is important.
Don’t overburden a solution with technology. 
(Layered models help understand the problem, but are not the best 
solution)

Metadata is the enabler
Metadata must be portable.

Never use the filesystem for metadata.
(directory structure/names, file names, etc..)
Volume structure is for people.

Databases are transient.
Only the label is persistent

Keep management close to the source.
Inventories should reside with the products.
Incremental build of datasets.



PPI Node Server

Application server 
Servlet

A servlet for each function (division of tasks).
Quick response (extension of server).
Easy to extend.
Portable – broad commercial support.
Well documented and supported interface.

Can be personalized
“portal” philosphy
“.pds” file type

Datacart
Shopping for data.



Data Cart

A user can add a product 
to the cart while 
inspecting inventory.
A user can take delivery 
of the cart contents as a 
single zip file.
Contents of zip file are 
organized like a PDS 
volume. 
(i.e. data in a DATA directory, 
documents in a DOCUMENT directory)



Tools and Servlets

All Tools and servlets are written in Java.
inventory: Scans labels and catalog files, 
extracts metadata and updates inventory 
database.
labeler: A label generator with plug-ins.
PDSLabel: A label parser class used by 
“inventory” and “labeler”.
servlets – simple and task specific.



Servlets
AddCartServlet: Adds an item to the data cart.
DatasetServlet: Queries for datasets.
DeliverServlet: Package and stream products or data cart.
DitdosServlet: Primary entry point, routes requests to specialized servlets.
HostServlet: Queries host (spacecraft) table.
InstrumentServlet: Queries instrument table.
MissionServlet: Queries mission table.
OptionsServlet: Access and management of session options.
PageletServlet: Streams snippets of HTML.
ProductServlet: Queries for products. 
ProfileServlet: Queries for profiles.
ReferenceServlet: Queries the references table.
SearchServlet: Presents search menus and routes requests.
ShowCartServlet: View and manage the data cart.
SourceServlet: Queries source file table.
ViewServlet: Stream a file for viewing.



Inventory Schema
Apply aliases to create 

common phrases

Used by interface
to optimize performance

One entry per Product

One entry for every file 
component

Tracks content of 
a volume

Dataset Summaries 

Catalog Tables
Used to provide depth for ID lookup



The Interface



What’s Been Learned
Connections to databases must be established at 
initialization. 

Establishing a connection can take many seconds, so resident services (like 
servlets) are better than non-resident (cgi).

Using a different connection for each type of query 
improves performance because of results caching.

Initial query (loading the cache) may take several seconds.
Subsequent queries can take 10th of a second.

Scalability is a real issue. 
The larger the inventory the longer it takes. 
It appears that dividing inventory into many tables (i.e., one per dataset?) will 
improve performance.

Choose the right time for locking in structure.
Incremental building of datasets means a volume isn’t a volume until sometime in 
the future.

Stability of Sun’s Application Server is questionable.



Other Considerations
Could OODT be used?

The Node server is a local service so multiple layers of abstraction is unnecessary.
Currently queries are to a MySQL database which resides on the same server. Any database 
system could be used. 

System Design
Define messages not implementations

because
Success of the web is URLs and HTML.
PDS labels are effective because they are independent of implementation.
All components of an implementation should be replaceable. Message 
content (metadata) is persistant.
Nodes and projects have different environments and need flexibility in 
implementation.



System Wide Services

System Design
Define messages not implementations

because
Success of the web is URL and HTML.
PDS labels are effective because they are independent of 
implementation.
All components of an implementation should be replaceable. 
Message content (metadata) is persistant.
Nodes and projects have different environments and need 
flexibility in implementation.
Single interface (multiple implementations)



System Wide Search Service
ASCII Table

Perl

CGI

URL

XML
HTML

Request

Response

DBMS

Servlet

Application 
Server

System Wide 
Interface

OODT CGI/Servlet

Aggregate

Nodes

URL

Zip
MIME

Request

Response

Browser

Profiles

Local 
InterfaceProduct Delivery


	PPI Node Server
	Basis
	PPI Node Server
	Data Cart
	Tools and Servlets
	Servlets
	Inventory Schema
	The Interface
	What’s Been Learned
	Other Considerations
	System Wide Services
	System Wide Search Service

