

Introducing "Object-Oriented Python & SPICE"

Introducing "Object-Oriented Python & SPICE" aka "00PS"

We define an "Event" associated with photon arrivals at the Cassini camera.

We define an "Event" associated with photon arrivals at the Cassini camera.

Geek Note

An "Event" object has these properties:

- Time
- Position
- Velocity
- Reference "Path" object defines the origin vs. time
- Reference "Frame" object defines coordinates system vs. time

Optionally...

- Direction of incoming photon
- Direction of outgoing photon
- Surface normal vector
- Link to another associated eventMore...

Note: All OOPs objects are implemented as arrays of arbitrary size and shape.

We define an "Event" associated with photon arrivals at the Cassini camera.

 $\subset \blacksquare$

Event #1 Photons arrive at camera

Event #2 Photons depart Saturn's "Surface"

Event #1 Photons arrive at camera

Geek Note

A "Surface" object defines a 2–D surface in 3–D space.

Subclasses:

- Spheroid
- Ellipsoid
- RingPlane
- OrbitPlane
- Ansa (edge-on ring)

Attributes:

- photon_to_event()
- photon_from_event()
- normal vector
- coordinate conversions

• More...

Event #2 Photons depart Saturn's "Surface"

Event #1 Photons arr

Event #3 Photons depart Sun's "Path"

> Event #2 Photons arrive & depart Saturn's surface

> > Event #1 Photons arrive at camera

Geek Note

A "Path" defines a position & velocity as a function of time.

Subclasses:

- SpicePath
- Orbit
- QuickPath (interpolates a SpicePath)

Attributes:

- photon_to_event()
- photon_from_event()
- More...

ns "Path" Event #2 ons arrive & depart Saturn's surface Event #1 Photons arrive at camera

Event #3 Photons depart Sun's path

> Event #2 Photons arrive & depart Saturn's surface

> > Event #1 Photons arrive at camera

Event #5 Photons depart Sun

> Event #4 Photons arrive & depart the ring plane

> > Event #1 Photons arrive at camera

Shadow Calculations

Event #3 Photons depart Sun's path

> Event #2 Photons arrive & depart Saturn's surface

Event #1 Photons arrive at camera

Shadow Calculations

Event #6 Photons that would have arrived at Saturn from the Sun intercept the ring plane first

Event #2 Photons arrive & depart Saturn's surface

Event #1 Photons arrive at camera

Shadow Calculations

m

Event #7 Photons that would have arrived at the ring plane intercept Saturn first

Event #4 Photons arrive & depart ring plane

Event #1 Photons arrive at camera

What OOPS can do

- OOPS performs extremely complicated planetary geometry calculations in a few lines of code.
- Operates on arrays of arbitrary size and shape in parallel.
- "Hides" the SPICE toolkit.

Manages SPICE kernels via an internal SQL/SQLite database.

Seconds.
Seconds.

Full-resolution image backplane generation is now feasible as an on-line service.

What else OOPS can do

 Ring plane resolution via Sample analytic derivatives: d(ring radius)/d(line,sample) = $\partial(ring radius) / \partial(position on ring surface)$ $\times \partial(\text{position on ring surface}) / \partial(\text{line of sight})$ $\times \partial(\text{line of sight}) / \partial(\text{line,sample})$

Ring radial resolution (km per pixel)

Line

The Full Class Hierarchy

- Backplane
- Body
- Sevent
- FOV
 - Flat
 - Ø Offset
 - Polynomial
 - Subarray
 - Subsampled

Frame

- Cmatrix
- InclinedFrame
- QuickFrame

- RingFrame Ø Rotation SpiceFrame SpinFrame Observation Occultation Pushbroom RasterScan Snapshot Path CirclePath Multipath
 - Orbit

QuickPath
SpicePath
Surface
Ansa
Ellipsoid
OrbitPlane
RingPlane
Spheroid
Transform

Sample

Line

Line

Pushbroom

Sample

Time

Time

Occultation

Instruments Supported

Cassini
CIRS
ISS
ISS
UVIS
VIMS
IR
VIS

VoyagerISS

HST ACS HRC WFC3 In NICMOS In NIC1 In NIC2 In NIC3 WFC3 IR 🔊 UVIS WFPC2

Geek Note

Instruments support the following methods

- from_file(filespec)
 - ... returns an Observation subclass object based on a data file specification.
- from_index(filespec)
 - ... returns a list of Observation subclass objects (but no data) for every row of an index file

Mark's \$0.02

OOPS + Python can enable the data services that PDS users want and expect.

NAIF needs to develop fast, "parallel" alternatives to two SPICE functions.

SPKEZ, SXFORM

SQLite is a free, universally available, lightweight DBMS that is ideal to support the SPICE kernel management needs of most users.